A Systematic Approach to Predicting Critical Heat Flux for Inclined Sprays
نویسندگان
چکیده
This study provides a new systematic approach to predicting the effects of spray inclination on critical heat flux (CHF). Experiments were performed with three pressure spray nozzles over a broad range of inclination angles at five flow rates and subcoolings of 15°C and 25°C. These experiments also included high-speed video analysis of spray formation, impact, and recoil for a 1.0 1.0 cm2 test surface. Inclined sprays produced elliptical impact areas, distorted by lateral liquid flow that provided partial resistance to dryout along the downstream edge of the impact ellipse. These observations are used to determine the locations of CHF commencement along the test surface. A new theoretical model shows that increasing inclination angle away from normal decreases both the spray impact area and the volumetric flux. These trends explain the observed trend of decreasing CHF with increasing inclination angle. Combining the new model with a previous point-based CHF correlation shows great success in predicting the effects of spray inclination on CHF. DOI: 10.1115/1.2804095
منابع مشابه
Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux
Experiments were conducted with PF-5052 liquid sprays impacting a 1.0 1.0 cm heated test surface at different inclination angles, flow rates, and subcoolings. Inclination angle had no noticeable effect on the single-phase or two-phase regions of the boiling curve. Maximum CHF was always achieved with the spray impinging normal to the test surface; increasing angle of inclination away from the n...
متن کاملExperimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling
Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...
متن کاملThe Effect of Linear Change of Tube Diameter on Subcooled Flow Boiling and Critical Heat Flux
One of the major industry problems is the flow boiling, where reaching to the critical heat flux (CHF) condition can lead to a temperature jump and damage of the systems. In the present study, the effects of a uniform change in tube diameter on subcooled flow boiling and CHF was numerically investigated. The Euler-Euler model was used to investigate the relationship between the two liquid and v...
متن کاملConvective Heat Transfer of Oil Based Nanofluid Flow Inside a Circular Tube
Abstract An empirical investigation was carried out to study convective heat transfer of nanofluid flow inside an inclined copper tube under uniform heat flux condition. Required data are acquired for laminar and hydrodynamically fully developed flow inside round tube. The stable CuO-base oil nanofluid with different nanoparticle weight fractions of 0.5%, 1% and 2% was produced by means of ul...
متن کاملExperimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube
In the present work, the critical heat flux measurements were performed for the subcooled flow boiling of pure water and magnetic nanofluids (i.e., water + 0.01 and 0.1 vol.% Fe3O4) in a vertical tube. The effect of applying an external magnetic field on the CHF variation was studied experimentally as well. The obtained results indicated that the subcooled flow boiling CHF in the vertical tub...
متن کامل